Complemented modular lattices and projective spaces of infinite dimension

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Representations of Relatively Complemented Modular Lattices

Introduction. A module over a ring will be said to be locally projective if and only if every finitely generated submodule is projective. As will be shown (7.14), it readily follows from known facts that if M is a locally projective module over a regular ring R, then the set L(M, R) of all finitely generated submodules of M is a relatively complemented modular lattice. This paper is concerned w...

متن کامل

Representations of Distributive Semilattices by Dimension Groups, Regular Rings, C*-algebras, and Complemented Modular Lattices

We study the relationships among existing results about representations of distributive semilattices by ideals in dimension groups, von Neu-mann regular rings, C*-algebras, and complemented modular lattices. We prove additional representation results which exhibit further connections with the scattered literature on these diierent topics.

متن کامل

Finitistic Dimension through Infinite Projective Dimension

We show that an artin algebra Λ having at most three radical layers of infinite projective dimension has finite finitistic dimension, generalizing the known result for algebras with vanishing radical cube. We also give an equivalence between the finiteness of fin.dim.Λ and the finiteness of a given class of Λ-modules of infinite projective dimension.

متن کامل

Complemented modular lattices with involution and Orthogonal Geometry

We associate with each orthogeometry (P,⊥) a CMIL, i.e. a complemented modular lattice with involution, L(P,⊥) consisting of all subspaces X and X with dimX < א0 and study its rôle in decompositions of (P,⊥) as directed resp. disjoint union. We also establish a 1-1-correspondence between ∃-varieties V of CMILs with V generated by its finite dimensional members and ‘quasivarieties’ G of orthogeo...

متن کامل

Quantum Dimension and Quantum Projective Spaces

We show that the family of spectral triples for quantum projective spaces introduced by D’Andrea and Da̧browski, which have spectral dimension equal to zero, can be reconsidered as modular spectral triples by taking into account the action of the element K2ρ or its inverse. The spectral dimension computed in this sense coincides with the dimension of the classical projective spaces. The connecti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1946

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1946-0018635-9